Introduction
NumPy (Numerical Python) is the foundation of many data science and scientific computing tasks in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of high-level mathematical functions.
In this post, we’ll explore essential NumPy functions, grouped into five key categories, with examples and expected outputs.
📦 1. Array Creation Functions
NumPy provides multiple ways to create arrays:
numpy.array()
Converts lists or tuples into NumPy arrays.
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr)
# Output: [1 2 3]
numpy.zeros()
Creates an array filled with zeros.
zeros_arr = np.zeros((2, 3))
print(zeros_arr)
# Output:
# [[0. 0. 0.]
# [0. 0. 0.]]
numpy.ones()
Creates an array filled with ones.
ones_arr = np.ones((3, 2))
print(ones_arr)
# Output:
# [[1. 1.]
# [1. 1.]
# [1. 1.]]
🔁 2. Array Manipulation Functions
numpy.reshape()
Changes the shape of an array without changing the data.
a = np.array([1, 2, 3, 4, 5, 6])
reshaped = a.reshape((2, 3))
print(reshaped)
# Output:
# [[1 2 3]
# [4 5 6]]
numpy.transpose()
Transposes the dimensions of an array.
b = np.array([[1, 2], [3, 4]])
transposed = np.transpose(b)
print(transposed)
# Output:
# [[1 3]
# [2 4]]
numpy.concatenate()
Joins two or more arrays along an existing axis.
x = np.array([[1, 2]])
y = np.array([[3, 4]])
concat = np.concatenate((x, y), axis=0)
print(concat)
# Output:
# [[1 2]
# [3 4]]
➕ 3. Mathematical Functions
numpy.sum()
Computes the sum of array elements.
arr = np.array([1, 2, 3, 4])
print(np.sum(arr))
# Output: 10
numpy.mean()
Calculates the mean (average) of array elements.
print(np.mean(arr))
# Output: 2.5
numpy.median()
Returns the median of the array elements.
print(np.median(arr))
# Output: 2.5
📊 4. Statistical Functions
numpy.std()
Computes the standard deviation.
arr = np.array([1, 2, 3, 4, 5])
print(np.std(arr))
# Output: 1.4142135623730951
numpy.var()
Computes the variance.
print(np.var(arr))
# Output: 2.0
numpy.corrcoef()
Returns the Pearson correlation coefficients.
x = np.array([1, 2, 3])
y = np.array([1, 2, 3])
corr_matrix = np.corrcoef(x, y)
print(corr_matrix)
# Output:
# [[1. 1.]
# [1. 1.]]
📐 5. Linear Algebra Functions
numpy.dot()
Performs dot product of two arrays.
a = np.array([1, 2])
b = np.array([3, 4])
print(np.dot(a, b))
# Output: 11
# (1*3 + 2*4)
numpy.linalg.inv()
Computes the inverse of a square matrix.
matrix = np.array([[1, 2], [3, 4]])
inverse = np.linalg.inv(matrix)
print(inverse)
# Output:
# [[-2. 1. ]
# [ 1.5 -0.5]]
numpy.linalg.det()
Computes the determinant of a square matrix.
det = np.linalg.det(matrix)
print(det)
# Output: -2.0000000000000004
✅ Conclusion
NumPy's core functions allow you to efficiently create, manipulate, and analyze numerical data in Python. Whether you're performing simple calculations or complex linear algebra operat
ions, these tools are essential for any data professional.
No comments:
Post a Comment